翻訳と辞書
Words near each other
・ Non-smooth mechanics
・ Non-solid
・ Non-sovereign monarchy
・ Non-sovereign nation
・ Non-specific effect
・ Non-specific effect of vaccines
・ Non-specific interstitial pneumonia
・ Non-specific polyamine oxidase
・ Non-specific serine/threonine protein kinase
・ Non-specific, adsorptive pinocytosis
・ Non-speech audio input
・ Non-spiking neuron
・ Non-Sport Update
・ Non-Sporting Group
・ Non-sports trading card
Non-squeezing theorem
・ Non-standard analysis
・ Non-standard calculus
・ Non-standard cosmology
・ Non-standard model
・ Non-standard model of arithmetic
・ Non-standard poker hand
・ Non-standard positional numeral systems
・ Non-standard RAID levels
・ Non-state (disambiguation)
・ Non-state actor
・ Non-state transfers
・ Non-status Indian
・ Non-stereospecific dipeptidase
・ Non-stick surface


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Non-squeezing theorem : ウィキペディア英語版
Non-squeezing theorem
The non-squeezing theorem, also called ''Gromov's non-squeezing theorem'', is one of the most important theorems in symplectic geometry.〔.〕 It was first proven in 1985 by Mikhail Gromov.
The theorem states that one cannot embed a sphere into a cylinder via a symplectic map unless the radius of the sphere is less than or equal to the radius of the cylinder. The importance of this theorem is as follows: very little was known about the geometry behind symplectic transformations. One easy consequence of a transformation being symplectic is that it preserves volume.〔D. McDuff and D. Salamon''Introduction to Symplectic Topology'', Cambridge University Press (1996), ISBN 978-0-19-850451-1.〕 One can easily embed a ball of any radius into a cylinder of any other radius by a volume-preserving transformation: just picture ''squeezing'' the ball into the cylinder (hence, the name non-squeezing theorem). Thus, the non-squeezing theorem tells us that, although symplectic transformations are volume-preserving, it is much more restrictive for a transformation to be symplectic than it is to be volume-preserving.
== Background and statement ==
We start by considering the symplectic spaces
: \mathbb^ = \,
the ball of radius ''R'': B(R) = \ | \|z \| < R \},
and the cylinder of radius ''r'': Z(r) = \ | x_1^2 + y_1^2 < r^2 \},
each endowed with the symplectic form
: \omega = dx_1 \wedge dy_1 + \cdots + dx_n \wedge dy_n. \,
The non-squeezing theorem tells us that if we can find a symplectic embedding ''φ'' : ''B''(''R'') → ''Z''(''r'') then ''R'' ≤ ''r''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Non-squeezing theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.